Software Architect’s Knowledge checklist (Blue — in external documents)

= MVC. Model responsibilities, View responsibilities, Controller Responsibilities

= MVC (Model-View-Presenter)

= MVVP (Model-View-ViewModel)

= 3-Tier (Presentation Layer, Business Layer, Database Layer)

= Separation of Concerns

= Bad Practices — Resume Driven Development (RDD, based on “cool technology”, not the best
suitable)

= Dependency injection

= Inversion of control

= REST API methods (GET, POST, PUT, PATCH, DELETE, HEAD). PUT vs POST, PATCH vs

PUT
= Versioning. Semantic Versioning.
= Scaffolding

* VIZERAL Theorem
= CAP Theorem, PARCELC Theorem — when it is eventual consistency
= Conway’s Law — The need of communication inside organization between teams. Microservices are

against Conway’s Law.
= |SO/IEC 42010
= Architectural Element
= Architectural definition
= Architectural description
= Views and viewpoints
= Perspectives and concerns of each perspective
= Test types:

a. Unit tests (class methods),
integration tests (CodeMVC + ORM DB),
Acceptance Testing (UAT) — Browser Simulation,
Feature Toggling — for consumer group (ENABLE / DISABLE)
Feature Throttling - % of customers to be affected by new feature
f. A/B Tests

= Scalability — Sharding
= Cisco Enclave Model
= High Availability (99,999+) VS Availability
= Architectural Styles — Multi-Tier (Horizontal), Multi-Layer (Verical, i.e. OSI Model)
= Archetypes
= SOA (Service-Oriented Architecture). Principles of SOA.
= Enterprise Service Bus (ESP)
= Vetro Pattern
= Service Orchestration VS Choreography — When to choose each other, practical examples
= Microservices
= Design patterns — main patterns, which to choose when, and what are the trade-offs, gang of four

® oo o

(Web Frameworks) Resume Driven Development (RDD)

At it’s most basic Resume Driven Development is the practice of picking new or popular technologies for
your work in order to make your resume look more impressive. This means using unfamiliar technology to
solve a problem that could be solved with known technology. You may not even know much about the stack
that you are trying to use and what the limitations are before you start doing it.

(Web Frameworks) MODEL-VIEW-CONTROLLER:

Model Responsibilities:

Updates Manipulates

Controller

(Web Frameworks) MODEL-VIEW-PRESENTER:

Manipulates

Updates
Presenter

*view and presenter are tightly coupled

(Web Frameworks) MODEL-VIEW-VIEWMODEL.:

Notifies

Manipulates

Data biding
ViewModel

*view and view model are abstracted away

(Web Frameworks) MODEL-VIEW-UPDATE:

Render state New state

Modify state

*view and model are tightly coupled

Stability

Scalability, Availibility & Stability Patterns >

erns _
——

Partitioning

Replication

Compute Crids

Publish-Subscribe

Point-to-Point

Messaging
Store -Forward
Request-Reply
Fire-forget
Actors
Event-Driven Architecture Fire<Receive-Eventually

Enterprise Service Bus
Domain Events
Event Stream Processing
tEvent Sourcing
Behavior Command & Query Responsibility Segregation (CQRS)
Round-robin allocation
Random allocaton
Weghted allocaton
Load-balancing
Work -stealing
Dynamic load balancing Work-donating
Queue-depth guerying
SPMD pattern
Master Worker pattern
Paralel Computing Loop Parallelsm pattern

Fork/join pattern

MapReduce pattern

Scale-Up (left, more power / server) vs Scale-Out (right, more servers)

(12. Intro to architecture) DEVELOPER, SOFTWARE ENGINEER, SOFTWARE ARCHITECT

= Developer + Curiosity + Analytical Mindset = Software Engineer
= Software Engineer + Contextual Knowledge + Strategy Driven Mindset = Software Architect

(12. Intro to architecture) THE FUNDAMENTAL PROPERTIES OF A SYSTEM MANIFEST
THEMSELVES IN TWO DIFFERENT WAYS

A. Externally visible behavior (what the system does) and functional interactions between the system
and its environment (users and other systems).
a. Defined by functional requirements
B. Quality properties (how the system does it).
a. Nonfunctional properties (performance, security, availability, etc.)

(12. Intro to architecture) ARCHITECTURE VERSUS DESIGN

Architecture

Modules

Packages

Components

Classes

(12. Intro to architecture) ARCHITECTURE MUST CONFORM TO

1. Stakeholder needs
2. Software engineering principles and best practices

(12. Intro to architecture) QUALITY VS COST VS TIME

High
Expensive; Quality Modre SApeiAve; D
high quality; | _____ modera e quality;
longer time to market moderate time to
market
Low . Short Time
Cost N to Market

longer time to marke

Inexpensive;
lower quality;
t

(o]

(15. Architect‘s role) ARCHITECT‘S FIELD OF OPERATION:

PROBLEM / Requirements Architecture SOLUTION

Analysis Definition SPACE

(15. Architect‘s role) ARCHITECT*S INVOLVEMENT IN SOFTWARE DEVELOPMENT CYCLE:

Depth of Involvement ——»

Enterprise architect

Solution architect

Software /Application
architect

>
5=
o)
‘o
c
(o]
o
w
()}
| .
5
c
O
()
(o}
(o)
(%]
(7]

Technical lead

Strategic Hands on coder

Level of detdil

(15. Architect‘s role) ARCHITECT AND TEAM

Client

Project
manager

AV

Systems
analyst

a

€| Architect €&

-

Designers

N

Domain experts/
technology specialists

Programmers

(15. Architect‘s role) MODELING DONE BY ARCHITECT

MODELING

Qualitative

Quantitative

Sketches

(25. Security Perspective) SECURITY DEFINITION

= SECURITY IS AN ABILITY OF THE SYSTEM TO RELIABLY CONTROL, MONITOR AND
AUDIT WHO CAN PERFORM WHAT ACTIONS ON WHICH RESOURCES AND THE
ABILITY TO DETECT AND RECOVER FROM SECURITY BREACHES.

= SECURITY IS ALSO A RISK MANAGEMENT PROCESS AGAINST COSTS OF GUARDING
FROM THREATS

(25. Security Perspective) TRUST MODEL

User Product User Product Price
Account Catalog Pricing Account Catalog Change
Records Records Records Operations Operations Operations
Data adminis- Full with Full with Full with All with All with All with
trator audit audit audit approval and audit approval from
audit a product price
administrator
Catalog clerk None None None All Read-only None
operations
Catalog None None None Read-only All All with audit
manager operations
with audit
Product price None None None None Read-only All with audit
administrator operations
Customer care None None None All with andit Read-only None
clerk operations
Registered cus- None None None All on own Read-only None
tomer record operations
Unknown Web- None None None None Read-only None
site user operations

(25. Security Perspective) DEMILITARIZED ZONE (DMZ) IN NETWORKS

»

| ,» Firewalls, demilitarized zone,
% U " data loss prevention
“ 7 P s

Antivirus software, patching,
security specifications for systems

Secure coding, security
specifications

.- File and data encryption,
....... enterprise rights management

.o+ Monitoring, intrusion
........ detection, remediation

Intranet Intranet
(LAN) Dhiz (LAN) DMZ

Router (WAN) Router (WAN)

(25. Security Perspective) CISCO ENCLAVE MODEL ARCHITECTURE

Enc

Visitor

Custo&

ave Traffic Patterns

R

Web site

Shop

> Store

User

/ authentication

Administrator

Attacker

e

Database

Store

management

Customer

management

Machine 1

Web site

Attacker
Visitor :
|
¥
User
Customer\ authentication

Machine 2

Shop

| Authentication I

\\

Administrator

(25. Security Perspective) VULNERABILITY POINTS

Reverse Parameter Overflow
engineering tampering
Cross-site
Parameter scripting SQL sSQL
tampering /,_ injection injection
Web Web Business Database
client server logic layer Database
Denial of System System System Sfem;ld
service data/ software/ software/
operating operating operating
system system system
\
System Data Code

File
disclosure

Code
injection

File

disclosure

Privilege
escalation

injection

Store

»{ Database

Store
management

Customer
management

Machine 3

> Database

10

(25. Security Perspective) ATTACK TREES

Root goal

Sub goals
Attacks
Attack cost

Burglarize Bribe admm Had remate user's
office: $10,000 at ISP: SS 000 system: $1,000

Attackcost]| | Attackcost:
$10,000 $5,000

Atmdt cost:

Hack throwgh firewall
into internal network: 55,000

(25. Security Perspective) RISK ASSESMENT TABLES

$1,000 Hack SMTP
gateway: 52,000
Attack cost: ack cost:

Direct access to database

Web-site flaw, free orders placed and fulfilled

Social-engineering attack, access to customer
accounts

8,000,000 0.2% 16,000
800,000 4.0% 32,000
4,000,000 1.5% 60,000

(25. Security Perspective) GOOD SECURITY PRINCIPLES

* Grant least amount of privileges possible
* Secure the weakest link

* Defend in depth

* Separate and compartmentalize

*» Keep security design simple

* Don’t rely on obscurity

* Use secure defaults

« Fail securely

» Assume external entities are untrusted

* Audit sensitive events

11

(28. Evolution Perspective) 4 TYPES OF MAINTENANCE

« Corrective maintenance: Reactive modification of a software product performed after delivery to correct

discovered problems

 Adaptive maintenance: Modification of a software product performed after delivery to keep a software

product usable in a changed or changing environment

« Perfective maintenance: Modification of a software product after delivery to improve performance or

maintainability

* Preventive maintenance: Modification of a software product after delivery to detect and correct latent

faults in the software product before they become effective faults

(28. Evolution Perspective) TYPES OF EVOLUTION

*Functional evolution — can relate to 4 types of maintenance
*Platform evolution — software and hardware
eIntegration evolution — evolution due to 3rd party software

system changes
*Growth — increased system use

/ load / complexity

(28. Evolution Perspective) DESIGN TACTICS

= Separation of concerns
= Encapsulation

= Single point of definition — DRY (Do not Repeat Yourself)

= Functional cohesion
= Low coupling

= Abstract common services

= Abstraction and layering
= Generalization patterns

= Inversion of control / dependency injection

= Interface segregation

(28. Evolution Perspective) VARIATION POINTS

What varies Design Pattern
Algorithms Strategy, Visitor
Actions Command
Implementations Bridge
Response to change Observer
Interactions between objects | Mediator

Object being created

Factory Method, Abstract Factory, Prototype

Structure being created

Builder

Traversal Algorithm

Iterator

Object interfaces

Adapter

Object behavior

Decorator, State

12

(29. Architectural styles) ARCHITECTURAL STYLES, DESIGN PATTERNS, LANG IDIOMS

ARCHITECTURAL STYLE DEFINE SYSTEM-LEVEL STRUCTURES VIA SET OF

ORGANIZATIONAL PRINCIPLES FOR THE SYSTEM AS A WHOLE.

A DESIGN PATTERN DOCUMENTS A COMMONLY RECURRING AND PROVEN STRUCTURE OF
INTERCONNECTED DESIGN ELEMENTS THAT SOLVES A GENERAL DESIGN PROBLEM

WITHIN A PARTICULAR CONTEXT.

A LANGUAGE IDIOM IS A PATTERN SPECIFIC TO A PROGRAMMING LANGUAGE. AN IDIOM
DESCRIBES HOW TO IMPLEMENT PARTICULAR ASPECTS OF ELEMENTS OR THE
RELATIONSHIPS BETWEEN THEM BY USING THE FEATURES OF A GIVEN LANGUAGE

(29. Architectural styles) PIPES AND FILTERS

we

Filters }
& —O ——
Adjusted
Price XML o> NPV - Price Lo Pr
Information Encoder Calculator . . Datab
’ Calculator
° s e
R iy
Source] | Sin
L 2 (1 |
Ppes

= The filter transforms or filters the data it receives via the pipes with which it is connected. A filter

can have any number of input pipes and any number of output pipes.

= The pipe is the connector that passes data from one filter to the next.
data, which is usually implemented by a data buffer to store all data,
process it.

It is a directional stream of
until the next filter has time to

= The pump or producer is the data source. It can be a static text file, or a keyboard input device,

continuously creating new data.

= The sink or consumer is the data target. It can be another file, a database, or a computer screen.

Advantages of pipes & filters:

= Reuse and interchangeability of components
= Supports concurrent execution

Disadvantages of pipes & filters:

= Performance - slowest filter affects whole chain

13

(29. Architectural styles) COMMON ARCHITECTURAL STYLES IN WEB SYSTEMS

* Multi-tier / n-tier / MVC

* Layers

» Publish/Subscribe, Message bus, Broker
» Event driven architecture a.k.a. Reactive
* CQS, CQRS, Event Sourcing

» SOA (Service Oriented Architecture)

* DDD (Domain Driven Design)

* RESTful APIs

(29. Architectural styles) MULTI-TIER STYLE

Client Application Server

-

Business Logic

Daita Acoass > Tables/Triggers/
Stored procedures

DBMS

Each tier represents a separate server with one or more of system

elements

Common tiers in multi-tier style:

1. Client — usually thin client-browser
2. Application Server
a. Application Server is responsible for:
i. Presentation (user interface preparation; e.g. HTML generation)
ii. Business processes (combining a sequence of business transactions into a service)
iii. Business transactions/Application Services (the fundamental business operations in
the system that act on business entities)

iv. Data Access

3. Data Storage — the databases in which the data resides

Advantages of multi-tier style:

= Clear separation of concerns
= Distribution across multiple machines

Disadvantages of multi-tier style:

= Network communication overhead
= Maintainability

14

(29. Architectural styles) LAYERS

uses
Client Layer N highest level of abstraction

I
Layer N-1

OSI Model
Data 7 La

Host Layers

lowest level of abstraction

(SegmentsI croransport)
andRollabity
(Packets l Path]
and IP (Logcal Addresslng)

Each layer services above layer and is a client to below layer
Low coupling, high decomposition, replicability of each layer

Media Layers

Defines data direction (requests top-bottom, responses
bottom-top)

VM, Communications, OS

OSI Model, as well as TCP/IP model used in networking (internet protocols, hardware’s firmware)

1. Layers not equal to N-TIER style
2. Layers define logical location, where tiers define physical location

Advantages of layers:

= Standardization
= Reuse of layers
= Localized dependencies

Disadvantages of layers:

= Cascades when changing behavior
= Difficulty to establish correct granularity of layers

(29. Architectural styles) COMMAND-QUERY RESPONSIBILITY SEGREGATION (CQRS)
Events
Write

(Domain)
Model

15

(29. Architectural styles) CQRS AND EVENT SOURCING

Events Event 0

Command Write

(Domain) Event 1
Model

Event N

Client Data aggregator,
normalizer

DTOs
Read

Model

Advantages of Command-Query Responsibility Segregation (CQRS) & event sourcing:

= Ability to replay or restore to a certain point in time
= Tailored write and read for performance
= Clear separation of read/write allows fine tuning the bottlenecking part

Disadvantages of Command-Query Responsibility Segregation (CQRS) & event sourcing:

= Complexity of elements required
= High demand on storage
= Eventual consistency

16

(30. Archetypes) COMMON SOFTWARE ARCHETYPES

» Web applications

* Mobile applications

* Rich client applications (Desktop applications)

* Rich internet applications (Rich media multiplatform client side browser applications)
* Service applications

* Hosted and cloud applications

» Office business applications

Individual User

Mobile Client Application

Ul Components

R!SEN‘I’A‘I’IOD

P

MOBILE

Configuration

CROSS-CUTTING

APPLICATION |LIE3EED)
ARCHETYPE NG ES
: Components /A Utilities K Agents
&

~
>

Communication / Connectivity

Local Data Unreliable
and Cache Networks

=0) ()

Mobile Support Infrastructure

BROWSER o
(Rendering |

\,

Web Server

Ul Components

Ul Process Components

APPLICATION
ARCHETYPE

Communication

CROSS-CUTTING
Operational Management

G

J
))
Data Access |/ Data Helpers/\| Service
< Components Utilities Agents
J

o
Data .
Sou e @

17

J
[.
1/ Business %
1) Processing

RICH INTERNET 3

€3 B 4 B
./\ Service Interfaces | /\\ Message Types /)

APPLICATION alil

ARCHETYPE

Communication

CROSS-CUTTING
Operational Management

B
gs <Wkaflow>/Components : Entities \
\

~
! Data Access Data Helpers/ Service
s Components Utilities Agents
G

Data
Sources

(30. Archetypes) CLOUD SERVICES

= Infrastructure as a Service (laaS):
Infrastructure as a Service contains the basic building blocks for cloud IT and typically provide
access to networking features, computers (virtual or on dedicated hardware), and data storage space.
IAAS provides highest flexibility

= Platform as a Service (PaaS):
Platforms as a service remove the need for organizations to manage the underlying infrastructure
(usually hardware and operating systems) and allow to focus on the deployment and management of
applications. Simplifies maintenance.

= Software as a Service (SaaS):
Software as a Service provides a completed product that is run and managed by the service provider.
With a Saa$S offering no need to think about how the service is maintained or how the underlying
infrastructure is managed, only how you will use that particular piece software.

Pizza as a Service

Software

Traditional Infrastructure Platform
On-Premises as a service as a service as a service
(Legacy) (laas) (Paas) (Saas)

Dining Table Dining Table Dining Table Dining Table

Drinks Drinks Drinks

Electric / Gas Electric / Gas Electric / Gas Electric / Gas

Oven Oven Oven Oven

Fire

Fire Fire Fire

Pizza Dough

Pizza Dough

Pizza Dough Pizza Dough

Tomato Sauce Tomato Sauce Tomato Sauce Tomato Sauce

Toppings Toppings Toppings Toppings

Cheese Cheese Cheese Cheese

Made at Home

Take and Bake

® You Manage

Pizza Delivery

@ Vendor Manages

Dining Out

18

(31. SOA) BUSINESS PROCESS VS BUSINESS FUNCTION

BUSINESS

Business

process
Function

Product Function

Function

SOA IS BRIDGING THE GAP BETWEEN BUSINESS AND IT. SOA SUPPORTS EVOLUTION AND
REDUCTION IN COMPLEXITY

(31. SOA) SERVICE ORIENTED ARCHITECTURAL STYLE

SOA
| I |]

Aﬁg;ﬁ::dm Service Service repository Service bus

| 1]

Contract Implementation Interface
| |
Business logic Data

Business Receive Fulfill Bill
Process @ Order Resiock Customer

Receive Fulfill Customer
Defined Order Order Restock Billing
Services Service Service Service

IT Web Retail Warehouse

Systems Application System System CRM

(31. SOA) ESB - ENTERPRISE SERVICE BUS

The ESB is implemented in software that operates between the business applications, and enables
communication among them. Ideally, the ESB should be able to replace all direct contact with the
applications on the bus, so that all communication takes place via the ESB.

Enterprise Service Bus Stack

] BPEL, Workflow

RFC, BAPI, IDoc,
XML-RPC

] MDM,0SCo
:] EDI, B2B

E.g. Test tools, loop
back adapters ...)

] WSDL, REST, CGI

Web Services

XML, XSL, DCOM,
CORBA

Protocol Conversion

N.N. (data locks,
multi-submit)

XI, WBI, BIZTALK,
Seeburger

MQ Series
MSMQ

Message Consolidation

Message Routing

Message Service

(31. SOA) VETRO PATTERN

Enterprise Service Bus (ESB)
AN
Validate Enrich Transform Route Operate
Message
XML Verify thatitis Add Convert Route Invoke the
Document awell-formed additional messagetoa message targetservice
XML datato the targetformat basedon orinteractin
documentand message to contentor some way with
conformstoa make it more environment the target
particular meaningful conditions system
schemaor and usefulto
WSDL atarget
documentthat service or
describesthe system
message.

(31. SOA) SERVICE ORCHESTRATION VS CHOREOGRAPHY

)

‘ Service A ‘ Reply Service B Service A
=N N
AR\ A7
h ~ d J)
7~ ~ /.L/; _" \
ke, Composite|
Pre Service o
!L{ N .\ %}7 b
S P o > —
- L\
Service D \‘i Service C Service D

Receive (B
&= . \
; Service B |

Send ~ -
Service C

(31. SOA) PRINCIPLES OF SOA

= SOA is not web services

= Standardized contract

= Service reference autonomy (only self-aware)
= Service location transparency

= Service longevity (long lived stable contracts)
= Service abstraction (black box)

= Service statelessness

= Service granularity (functionality must be relevant)
= Service composability

= Service discovery

= Service reusability

(31. SOA) WHY SOA?

* Support agility

* Built for change/flexibility

* Faster time to market

* Leverage of existing assets

* Reduced integration expense
» Complexity management

(32. Microservices) MICROSERVICES

Microservices architectural style is an approach to developing a single application as a suite of small

services, each running in its own process and communicating with lightweight mechanisms, often an HTTP

resource API.

21

Microservices

Identity Service
Provider
. ! Remote
Service Servi
API| ervice

Gateway
Client Service
Static Service
Content Management |—» Discovery
Management component is responsible for placing services on nodes, identifying failures, rebalancing

services across nodes, etc.

Service Discovery maintains a list of services and which nodes they are located on. Enables service lookup
to find the endpoint for a service.

API Gateway is the entry point for clients. Clients don't call services directly. Instead, they call the API
gateway, which forwards the call to the appropriate services on the back end. The API gateway might
aggregate the responses from several services and return the aggregated response.

(32. Mi

(32. Mi

croservices) PRINCIPLES OF MICROSERVICES:

Full product ownership

Focus around business capabilities

Components by services

End user interaction

Full stack teams

Work against Conway’s law (no need for communication of teams inside organization)
o https://en.wikipedia.org/wiki/Conway%27s_law

Dumb pipes smart endpoints

croservices) HIDDEN & OWNED PERSISTENCE (Decentralized data management)

%28

2

[0

monolith - single database microservices - application databases

22

https://en.wikipedia.org/wiki/Conway%27s_law

(32. Microservices) 5 ARCHITECTURAL CONSTRAINTS OF MICROSERVICES

Elastic (scale well)

Resilient (no impact to other services)
Composable (defined and uniform API schema)
Minimal (highly cohesive)

Complete

MONOLITH ¥ S MICROSERVICES

* Simplicity ® Partial deployment
® Consistency ® Availability
® Inter-module refactoring ® Preserve modularity

® Multiple platforms

23

