
1

Software Architect’s Knowledge checklist (Blue – in external documents)

 MVC. Model responsibilities, View responsibilities, Controller Responsibilities

 MVC (Model-View-Presenter)

 MVVP (Model-View-ViewModel)

 3-Tier (Presentation Layer, Business Layer, Database Layer)

 Separation of Concerns

 Bad Practices – Resume Driven Development (RDD, based on “cool technology”, not the best

suitable)

 Dependency injection

 Inversion of control

 REST API methods (GET, POST, PUT, PATCH, DELETE, HEAD). PUT vs POST, PATCH vs

PUT

 Versioning. Semantic Versioning.

 Scaffolding

 VIZERAL Theorem

 CAP Theorem, PARCELC Theorem – when it is eventual consistency

 Conway’s Law – The need of communication inside organization between teams. Microservices are

against Conway’s Law.

 ISO/IEC 42010

 Architectural Element

 Architectural definition

 Architectural description

 Views and viewpoints

 Perspectives and concerns of each perspective

 Test types:

a. Unit tests (class methods),

b. integration tests (CodeMVC + ORM DB),

c. Acceptance Testing (UAT) – Browser Simulation,

d. Feature Toggling – for consumer group (ENABLE / DISABLE)

e. Feature Throttling - % of customers to be affected by new feature

f. A/B Tests

 Scalability – Sharding

 Cisco Enclave Model

 High Availability (99,999+) VS Availability

 Architectural Styles – Multi-Tier (Horizontal), Multi-Layer (Verical, i.e. OSI Model)

 Archetypes

 SOA (Service-Oriented Architecture). Principles of SOA.

 Enterprise Service Bus (ESP)

 Vetro Pattern

 Service Orchestration VS Choreography – When to choose each other, practical examples

 Microservices

 Design patterns – main patterns, which to choose when, and what are the trade-offs, gang of four

2

(Web Frameworks) Resume Driven Development (RDD)

At it’s most basic Resume Driven Development is the practice of picking new or popular technologies for

your work in order to make your resume look more impressive. This means using unfamiliar technology to

solve a problem that could be solved with known technology. You may not even know much about the stack

that you are trying to use and what the limitations are before you start doing it.

(Web Frameworks) MODEL-VIEW-CONTROLLER:

(Web Frameworks) MODEL-VIEW-PRESENTER:

Model Responsibilities:

3

(Web Frameworks) MODEL-VIEW-VIEWMODEL:

(Web Frameworks) MODEL-VIEW-UPDATE:

4

5

Scale-Up (left, more power / server) vs Scale-Out (right, more servers)

6

(12. Intro to architecture) DEVELOPER, SOFTWARE ENGINEER, SOFTWARE ARCHITECT

 Developer + Curiosity + Analytical Mindset = Software Engineer

 Software Engineer + Contextual Knowledge + Strategy Driven Mindset = Software Architect

(12. Intro to architecture) THE FUNDAMENTAL PROPERTIES OF A SYSTEM MANIFEST

THEMSELVES IN TWO DIFFERENT WAYS

A. Externally visible behavior (what the system does) and functional interactions between the system

and its environment (users and other systems).

a. Defined by functional requirements

B. Quality properties (how the system does it).

a. Nonfunctional properties (performance, security, availability, etc.)

(12. Intro to architecture) ARCHITECTURE VERSUS DESIGN

(12. Intro to architecture) ARCHITECTURE MUST CONFORM TO

1. Stakeholder needs

2. Software engineering principles and best practices

(12. Intro to architecture) QUALITY VS COST VS TIME

7

(15. Architect‘s role) ARCHITECT‘S FIELD OF OPERATION:

(15. Architect‘s role) ARCHITECT‘S INVOLVEMENT IN SOFTWARE DEVELOPMENT CYCLE:

(15. Architect‘s role) TYPES OF ACHITECTS:

8

(15. Architect‘s role) ARCHITECT AND TEAM

(15. Architect‘s role) MODELING DONE BY ARCHITECT

9

(25. Security Perspective) SECURITY DEFINITION

 SECURITY IS AN ABILITY OF THE SYSTEM TO RELIABLY CONTROL, MONITOR AND

AUDIT WHO CAN PERFORM WHAT ACTIONS ON WHICH RESOURCES AND THE

ABILITY TO DETECT AND RECOVER FROM SECURITY BREACHES.

 SECURITY IS ALSO A RISK MANAGEMENT PROCESS AGAINST COSTS OF GUARDING

FROM THREATS

(25. Security Perspective) TRUST MODEL

(25. Security Perspective) DEMILITARIZED ZONE (DMZ) IN NETWORKS

10

(25. Security Perspective) CISCO ENCLAVE MODEL ARCHITECTURE

(25. Security Perspective) ATTACK SURFACE AND IT‘S REDUCTION

(25. Security Perspective) VULNERABILITY POINTS

11

(25. Security Perspective) ATTACK TREES

(25. Security Perspective) RISK ASSESMENT TABLES

(25. Security Perspective) GOOD SECURITY PRINCIPLES

• Grant least amount of privileges possible

• Secure the weakest link

• Defend in depth

• Separate and compartmentalize

• Keep security design simple

• Don’t rely on obscurity

• Use secure defaults

• Fail securely

• Assume external entities are untrusted

• Audit sensitive events

12

(28. Evolution Perspective) 4 TYPES OF MAINTENANCE

• Corrective maintenance: Reactive modification of a software product performed after delivery to correct

discovered problems

• Adaptive maintenance: Modification of a software product performed after delivery to keep a software

product usable in a changed or changing environment

• Perfective maintenance: Modification of a software product after delivery to improve performance or

maintainability

• Preventive maintenance: Modification of a software product after delivery to detect and correct latent

faults in the software product before they become effective faults

(28. Evolution Perspective) TYPES OF EVOLUTION

•Functional evolution – can relate to 4 types of maintenance

•Platform evolution – software and hardware

•Integration evolution – evolution due to 3rd party software

system changes

•Growth – increased system use / load / complexity

(28. Evolution Perspective) DESIGN TACTICS

 Separation of concerns

 Encapsulation

 Single point of definition – DRY (Do not Repeat Yourself)

 Functional cohesion

 Low coupling

 Abstract common services

 Abstraction and layering

 Generalization patterns

 Inversion of control / dependency injection

 Interface segregation

(28. Evolution Perspective) VARIATION POINTS

13

(29. Architectural styles) ARCHITECTURAL STYLES, DESIGN PATTERNS, LANG IDIOMS

ARCHITECTURAL STYLE DEFINE SYSTEM-LEVEL STRUCTURES VIA SET OF

ORGANIZATIONAL PRINCIPLES FOR THE SYSTEM AS A WHOLE.

A DESIGN PATTERN DOCUMENTS A COMMONLY RECURRING AND PROVEN STRUCTURE OF

INTERCONNECTED DESIGN ELEMENTS THAT SOLVES A GENERAL DESIGN PROBLEM

WITHIN A PARTICULAR CONTEXT.

A LANGUAGE IDIOM IS A PATTERN SPECIFIC TO A PROGRAMMING LANGUAGE. AN IDIOM

DESCRIBES HOW TO IMPLEMENT PARTICULAR ASPECTS OF ELEMENTS OR THE

RELATIONSHIPS BETWEEN THEM BY USING THE FEATURES OF A GIVEN LANGUAGE

(29. Architectural styles) PIPES AND FILTERS

 The filter transforms or filters the data it receives via the pipes with which it is connected. A filter

can have any number of input pipes and any number of output pipes.

 The pipe is the connector that passes data from one filter to the next. It is a directional stream of

data, which is usually implemented by a data buffer to store all data, until the next filter has time to

process it.

 The pump or producer is the data source. It can be a static text file, or a keyboard input device,

continuously creating new data.

 The sink or consumer is the data target. It can be another file, a database, or a computer screen.

Advantages of pipes & filters:

 Reuse and interchangeability of components

 Supports concurrent execution

Disadvantages of pipes & filters:

 Performance - slowest filter affects whole chain

14

(29. Architectural styles) COMMON ARCHITECTURAL STYLES IN WEB SYSTEMS

• Multi-tier / n-tier / MVC

• Layers

• Publish/Subscribe, Message bus, Broker

• Event driven architecture a.k.a. Reactive

• CQS, CQRS, Event Sourcing

• SOA (Service Oriented Architecture)

• DDD (Domain Driven Design)

• RESTful APIs

(29. Architectural styles) MULTI-TIER STYLE

Common tiers in multi-tier style:

1. Client – usually thin client-browser

2. Application Server

a. Application Server is responsible for:

i. Presentation (user interface preparation; e.g. HTML generation)

ii. Business processes (combining a sequence of business transactions into a service)

iii. Business transactions/Application Services (the fundamental business operations in

the system that act on business entities)

iv. Data Access

3. Data Storage – the databases in which the data resides

Advantages of multi-tier style:

 Clear separation of concerns

 Distribution across multiple machines

Disadvantages of multi-tier style:

 Network communication overhead

 Maintainability

15

(29. Architectural styles) LAYERS

OSI Model, as well as TCP/IP model used in networking (internet protocols, hardware’s firmware)

1. Layers not equal to N-TIER style

2. Layers define logical location, where tiers define physical location

Advantages of layers:

 Standardization

 Reuse of layers

 Localized dependencies

Disadvantages of layers:

 Cascades when changing behavior

 Difficulty to establish correct granularity of layers

(29. Architectural styles) COMMAND-QUERY RESPONSIBILITY SEGREGATION (CQRS)

16

(29. Architectural styles) CQRS AND EVENT SOURCING

Advantages of Command-Query Responsibility Segregation (CQRS) & event sourcing:

 Ability to replay or restore to a certain point in time

 Tailored write and read for performance

 Clear separation of read/write allows fine tuning the bottlenecking part

Disadvantages of Command-Query Responsibility Segregation (CQRS) & event sourcing:

 Complexity of elements required

 High demand on storage

 Eventual consistency

17

(30. Archetypes) COMMON SOFTWARE ARCHETYPES

• Web applications

• Mobile applications

• Rich client applications (Desktop applications)

• Rich internet applications (Rich media multiplatform client side browser applications)

• Service applications

• Hosted and cloud applications

• Office business applications

18

 (30. Archetypes) CLOUD SERVICES

 Infrastructure as a Service (IaaS):

Infrastructure as a Service contains the basic building blocks for cloud IT and typically provide

access to networking features, computers (virtual or on dedicated hardware), and data storage space.

IAAS provides highest flexibility

 Platform as a Service (PaaS):

Platforms as a service remove the need for organizations to manage the underlying infrastructure

(usually hardware and operating systems) and allow to focus on the deployment and management of

applications. Simplifies maintenance.

 Software as a Service (SaaS):

Software as a Service provides a completed product that is run and managed by the service provider.

With a SaaS offering no need to think about how the service is maintained or how the underlying

infrastructure is managed, only how you will use that particular piece software.

19

(31. SOA) BUSINESS PROCESS VS BUSINESS FUNCTION

SOA IS BRIDGING THE GAP BETWEEN BUSINESS AND IT. SOA SUPPORTS EVOLUTION AND

REDUCTION IN COMPLEXITY

(31. SOA) SERVICE ORIENTED ARCHITECTURAL STYLE

20

(31. SOA) ESB – ENTERPRISE SERVICE BUS

The ESB is implemented in software that operates between the business applications, and enables

communication among them. Ideally, the ESB should be able to replace all direct contact with the

applications on the bus, so that all communication takes place via the ESB.

(31. SOA) VETRO PATTERN

21

(31. SOA) SERVICE ORCHESTRATION VS CHOREOGRAPHY

(31. SOA) PRINCIPLES OF SOA

▪ SOA is not web services

▪ Standardized contract

▪ Service reference autonomy (only self-aware)

▪ Service location transparency

▪ Service longevity (long lived stable contracts)

▪ Service abstraction (black box)

▪ Service statelessness

▪ Service granularity (functionality must be relevant)

▪ Service composability

▪ Service discovery

▪ Service reusability

(31. SOA) WHY SOA?

• Support agility

• Built for change/flexibility

• Faster time to market

• Leverage of existing assets

• Reduced integration expense

• Complexity management

(32. Microservices) MICROSERVICES

Microservices architectural style is an approach to developing a single application as a suite of small

services, each running in its own process and communicating with lightweight mechanisms, often an HTTP

resource API.

22

Management component is responsible for placing services on nodes, identifying failures, rebalancing

services across nodes, etc.

Service Discovery maintains a list of services and which nodes they are located on. Enables service lookup

to find the endpoint for a service.

API Gateway is the entry point for clients. Clients don't call services directly. Instead, they call the API

gateway, which forwards the call to the appropriate services on the back end. The API gateway might

aggregate the responses from several services and return the aggregated response.

(32. Microservices) PRINCIPLES OF MICROSERVICES:

 Full product ownership

 Focus around business capabilities

 Components by services

 End user interaction

 Full stack teams

 Work against Conway’s law (no need for communication of teams inside organization)

o https://en.wikipedia.org/wiki/Conway%27s_law

 Dumb pipes smart endpoints

(32. Microservices) HIDDEN & OWNED PERSISTENCE (Decentralized data management)

https://en.wikipedia.org/wiki/Conway%27s_law

23

(32. Microservices) 5 ARCHITECTURAL CONSTRAINTS OF MICROSERVICES

 Elastic (scale well)

 Resilient (no impact to other services)

 Composable (defined and uniform API schema)

 Minimal (highly cohesive)

 Complete

